Modeling of Interactions between the Zebrafish Hatching Enzyme ZHE1 and A Series of Metal Oxide Nanoparticles: Nano-QSAR and Causal Analysis of Inactivation Mechanisms
نویسندگان
چکیده
The quantitative relationships between the activity of zebrafish ZHE1 enzyme and a series of experimental and physicochemical features of 24 metal oxide nanoparticles were revealed. Vital characteristics of the nanoparticles' structure were reflected using both experimental and theoretical descriptors. The developed quantitative structure-activity relationship model for nanoparticles (nano-QSAR) was capable of predicting the enzyme inactivation based on four descriptors: the hydrodynamic radius, mass density, the Wigner-Seitz radius, and the covalent index. The nano-QSAR model was calculated using the non-linear regression tree M5P algorithm. The developed model is characterized by high robustness R²bagging = 0.90 and external predictivity Q²EXT = 0.93. This model is in agreement with modern theories of aquatic toxicity. Dissolution and size-dependent characteristics are among the key driving forces for enzyme inactivation. It was proven that ZnO, CuO, Cr₂O₃, and NiO nanoparticles demonstrated strong inhibitory effects because of their solubility. The proposed approach could be used as a non-experimental alternative to animal testing. Additionally, methods of causal discovery were applied to shed light on the mechanisms and modes of action.
منابع مشابه
Causation or only correlation? Application of causal inference graphs for evaluating causality in nano-QSAR models.
In this paper, we suggest that causal inference methods could be efficiently used in Quantitative Structure-Activity Relationships (QSAR) modeling as additional validation criteria within quality evaluation of the model. Verification of the relationships between descriptors and toxicity or other activity in the QSAR model has a vital role in understanding the mechanisms of action. The well-know...
متن کاملEvaluation of of the performance of the zebrafish (Danio rerio) model in nanotoxicology studies with emphasis on embryo pathology
The present study was conducted to evaluate the performance of zebrafish (Danio rerio) as a model in embryo and fetal pathology in nanotoxicology studies. Examination of the sources showed that it is possible to completely inhibit hatching and fetal death when exposed to nanoparticles, because nanoparticles interact with hatching enzymes. Zebrafish embryo developmental abnormalities have been s...
متن کاملSonochemical Synthesis of Novel Nano Flower Lead(II) Metal-organic Coordination Polymer: A New Precursor to Produce Nano-sized PbO
Metal-organic coordination polymers are a class of organic–inorganic materials consists of metal ions linked together through multi-dentate organic ligands, to form a polymeric chain. These materials have received a great deal of attention in a wide range of different areassuch as catalysis, sensing, luminescence, separation and storage used . The new nano flowerPb(II) 1Dmetal-organic chain {[P...
متن کاملHigh Content Screening of Zebrafish Greatly Speeds up Nanoparticle Hazard Assessment
With the mass production of engineered nanoparticles, risk assessment efforts are in need of platforms that offer predictive value to human health and environment, and also possess high throughput screening capacity. Scientists, when turning to a model-organism to help answer genetic questions that cannot be easily addressed in humans, often chose the zebrafish (Danio rerio). Zebrafish share th...
متن کاملThermal Inactivation and Aggregation of Lysozyme in the Presence of Nano- TiO2 and Nano-SiO2 in Neutral pH
Protein aggregation is a problem in biotechnology. High temperature is one of the most important reasons to enhance enzyme inactivation and aggregation in industrial systems. This work focuses on the effect of TiO2 and SiO2 nanoparticles on refolding and reactivation of lysozyme. In the presence of TiO2 and SiO2 nanoparticles, after enzyme heat treatm...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2017